
 

USER’S REFERENCE MANUAL 
 

 

 

XMEM+ 
External Memory plus 

Parallel Bus Expansion Capability 
for Arduino / Genuino MEGA 2560, MEGA ADK 

Model No. 100-7699  

Doc. No. M7699 Rev:  1.01   12/28/15 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
649 School Street / Pembroke, MA  02359 USA / Tel:  (781) 293-3059 

www.scidyne.com 



 

© Copyright 2015 

SCIDYNE Corporation 

“All Rights Reserved” 

Previous revision:  1.00  7/23/15 

 

DISCLAIMER: 
This document contains proprietary 

information regarding SCIDYNE and 

its products.  The information is 

subject to change without notice.  

SCIDYNE makes no warranty of any 

kind with regard to this material, 

including but not limited to, the 

implied warranties of merchantability 

and fitness for a particular purpose. 

SCIDYNE shall not be liable for 

errors contained herein or for 

incidental or consequential damages 

in connection with the furnishing, 

performance, or use of this material. 

No part of this document may be 

duplicated in any form without prior 

written consent of SCIDYNE. 

 

 

WARRANTY: 

SCIDYNE warrants this product 

against defects in materials and 

workmanship and, that it shall 
conform to specifications current at 

the time of shipment, for a period of 

one year from date of shipment.  

Duration and conditions of warranty 

may be superseded when the product 

is integrated into other SCIDYNE 

products. During the warranty period, 

SCIDYNE will, at its option and 

without charge to Buyer, either repair 

or replace products which prove 

defective.  Repair or replacement of a 

defective product or part thereof does 

not extend the original warranty 

period. 

 

 

WARRANTY SERVICE: 

For warranty service or repair, this 

product must be returned to a service 

facility designated by SCIDYNE.  

The Buyer must obtain prior approval 

and a Return Material Authorization 

(RMA) number before returning any 
products.  The RMA number must be 

clearly visible on the shipping 

container. The Buyer shall prepay 

shipping and insurance charges to the 

service facility and SCIDYNE shall 

pay shipping and insurance charges to 

Buyer’s facility for products repaired 

or replaced.  SCIDYNE may, at its 

discretion, bill the Buyer for return 

shipping and insurance charges for 

products received for repair but 

determined to be non-defective. 

Additionally, the Buyer shall pay all 

shipping charges, duties and taxes for 
products returned to SCIDYNE from 

another country.  

 

 

LIMITATION OF WARRANTY:   

The forgoing warranty shall not apply 

to defects resulting from improper or 

negligent maintenance by the Buyer, 

Buyer-supplied products or 

interfacing, unauthorized 

modifications or misuse, operation 

outside the published specifications of 

the product or improper installation 

site preparation or maintenance, or the 

result of an accident. The design and 

implementation of any circuit using 

this product is the sole responsibility 

of the Buyer.  SCIDYNE does not 

warrant the Buyer’s circuitry or 

malfunctions of SCIDYNE products 

that result from the Buyer’s circuitry.  

In addition, SCIDYNE does not 

warrant any damage that occurs as a 
result of the Buyer’s circuit or any 

defects that result from Buyer-

supplied products.  This Warranty 

does not cover normal preventative 

maintenance items such as fuse 

replacement, lamp replacement, 

resetting of circuit breakers, cleaning 

of the Product or problems caused by 

lack of preventative maintenance, 

improper cleaning, improper 

programming or improper operating 

procedures. No other warranty is 

expressed or implied.   SCIDYNE 

specifically disclaims the implied 

warranties of merchantability and 

fitness for a particular purpose.  Some 

states do not permit limitation or 

exclusion of implied warranties; 

therefore, the aforesaid limitation(s) 

or exclusion(s) may not apply to the 

Buyer.  This warranty gives you 

specific legal rights and you may have 

other rights which vary from state to 
state. 

CERTIFICATION: 

Testing and other quality control 

techniques are utilized to the extent 

SCIDYNE deems necessary to 

support this warranty.  Specific testing 

of all parameters is not necessarily 
performed, except those mandated by 

government requirements. 

 

 

30-DAY PRODUCT 

EVALUATION POLICY:   

SCIDYNE offers a no-risk trial for 

initial, low quantity, evaluation 

purchases. Items purchased for 

evaluation can be returned within 30 

days of purchase for a full refund less 

shipping charges.  The Buyer must 

obtain a Return Material 

Authorization (RMA) number before 

returning any products. The entire 

package, including hardware, 

software, documentation, discount 

coupons and any other accessories 

supplied must be returned intact and 

in new and working condition.  This 

policy will not be honored for 

packages that are not returned 

complete and intact.   The Buyer shall 
prepay shipping and insurance 

charges to SCIDYNE.  To expedite 

the return process, the RMA number 

must be clearly visible on the shipping 

container. SCIDYNE will cancel the 

invoice, refund by check or issue 

credit to your credit card within 10 

days after receipt of returned 

merchandise. 

 

 

LIFE SUPPORT POLICY: 

Certain applications may involve the 

risks of death, personal injury or 

severe property or environmental 

damage (“Critical Applications”). 

 

SCIDYNE products are not designed, 

intended, authorized or warranted to 

be suitable for use in life-support 

applications, devices or systems or 

other critical applications without the 

express written approval of the 

president of SCIDYNE.   



 

Table of Contents 

 
Conventions and Terminology Used in this Publication................................................................................ 4 

Introduction....................................................................................................................................................... 2 

Key Features ................................................................................................................................................. 3 
512KB External SRAM ........................................................................................................................... 3 

Parallel Bus Expansion............................................................................................................................. 3 

Buffered SPI Signals ................................................................................................................................ 3 

Standard Arduino MEGA R3 Connector Layout ................................................................................... 3 
Component Identification............................................................................................................................. 4 

External Memory Interface .............................................................................................................................. 5 

XMCRA - External Memory Control Register A....................................................................................... 5 

XMCRB - External Memory Control Register B ....................................................................................... 5 
Re-Assigned Digital I/O Ports ..................................................................................................................... 6 

Memory Map................................................................................................................................................. 6 

SRAM................................................................................................................................................................ 7 

Arduino Memory Segments ( .data,  .bss,  heap,  stack ) ........................................................................... 7 
Accessing and using the XMEM+ SRAM.................................................................................................. 8 

Use Internal Memory for heap................................................................................................................. 8 

Relocate the heap to External Memory................................................................................................... 8 

Using Memory Banks............................................................................................................................... 9 
BSEL - Bank Select Register............................................................................................................... 9 

Bank Switching Management............................................................................................................ 10 

Parallel Bus Expansion................................................................................................................................... 12 

Data Bus ...................................................................................................................................................... 12 
Address Bus ................................................................................................................................................ 12 

Control Signals............................................................................................................................................ 12 

VBUS ......................................................................................................................................................... 12 

RD*.......................................................................................................................................................... 12 
WR*......................................................................................................................................................... 12 

EN*.......................................................................................................................................................... 12 

RESOUT ................................................................................................................................................. 12 

Write and Read Operations ........................................................................................................................ 13 
Timing Diagram.......................................................................................................................................... 13 

Adding Wait-States for Accessing Slower Devices ................................................................................. 14 

Defining External Memory Sectors....................................................................................................... 14 

Setting Wait-State Timing ..................................................................................................................... 14 
Hardware Examples.................................................................................................................................... 15 

82C55A Peripheral Interface ................................................................................................................. 15 

Address Decoding Circuits .................................................................................................................... 16 

SPI Bus Signals........................................................................................................................................... 17 
MISO - Master-In-Slave-Out................................................................................................................. 17 

MOSI - Master-Out-Slave-In................................................................................................................. 17 

SCK - Serial Clock ................................................................................................................................. 17 

Specifications .................................................................................................................................................. 18 
Appendix-A: Schematic Diagram.................................................................................................................. 19 

User Notes ....................................................................................................................................................... 20 



ٌ㍰

 

Conventions and Terminology Used in this Publication 
 

Safety and Usage Conventions 

 

Note: 

 

Provides important information and useful tips that will assist in 

the understanding and operation of this product. 

 

Caution: 

 

Calls attention to a procedure, practice, or condition that could 

possibly cause equipment damage or bodily injury. 

 

Danger: 

 

Calls attention to a procedure, practice, or condition that is likely 

to cause extensive equipment damage, severe bodily injury, or 

death if not observed. 

 

Terminology 
 

Logic Conditions 

Unless otherwise noted, logic signals are designated as TRUE (Set) and FALSE (Clear).  Names with an 

asterisk (*) postscript are inverted or active low.  Unless otherwise noted TRUE is considered logic '1' 

(+5Vdc or +3.3Vdc) and FALSE is considered logic '0' (0Vdc). 
 

Numbering Systems 

Computerized equipment often requires its numeric data to be represented in different forms depending 

on the audience and information being conveyed.  Decimal numbers are typically used for end-user data 
entry and display while internally these values are converted and manipulated in native binary.  

Hexadecimal numbers are often used by programmers as an intermediate level between binary and 

decimal notations. 

 

Base Name Format (MS ←−−→ LS) 

2 Binary 0b10111001  or  1011 10012 

10 Decimal 185 

16 Hexadecimal 0xB9  or  B916  or  HB9  

 

Multi-Byte Word Formats 
Unless otherwise specified numbers or registers spanning multiple bytes are stored in “little endian” 
format.  The first address (ADDR+0) will contain the Least Significant Byte (LSB) while the Most 

Significant Byte (MSB) will reside at the highest address.   

 

ADDR+0 ADDR ADDR+n 

LSB LS ←−−→ MS MSB 



 

Page 2 

Introduction 
The XMEM+ is a peripheral board which enhances a standard Arduino MEGA 2560 or 

MEGA ADK in two significant ways: 
 

1. Increasing the amount of available SRAM 

2. Adding true Parallel Bus Expansion capability 

 

 

Unless noted separately, in the context of this document 

MEGA will be used to mean both the Arduino (Genuino) 
MEGA 2560 and MEGA ADK microcontroller board products.  

 

The Arduino MEGA features the ability to add memory and I/O space outside of it's 

internal 8KB SRAM. The mechanism is built-in to the Atmel ATMEGA2560-16AU 
microcontroller and requires only minimal supporting hardware and software to apply.  

Except for the nineteen I/O lines needed to implement the external memory interface, no 

other Arduino signals are necessary. The external space appears seamlessly within the 

Arduino memory map and operates at full bus speed (no Wait-States). The XMEM+ is 
designed specifically to take full advantage of the External Memory interface feature. 

 

 

The product name XMEM refers to eXternal MEMory as 

described in the Atmel data sheet for the ATMEGA2560 
microcontroller. The plus (+) refers to the inclusion of the 

expansion bus. 

 

Figure 1 - XMEM+ Simplified Block Diagram 

A B

DIR

BUFFER

BA

BUFFERED

CONTROL BUS

and SPI BUS

V CC

V CC

BUFFERED
DATA BUS

BUFFER

BUFFERED

ADDRESS BUS

BUFFER

B

V CC

A

HIGH-SPEED

LOGIC
A D[7 :0]

A DDRE SS[15:8]

A [7:0]

BSEL[3:0]

EN_BUS*

BUS_ DIR

EN_RAM*

DATA[7:0]

ADDRE SS[15:0]

M7699-01

A TMEGA25 60-16AU
Micro co n troller 

P ORTA [7:0]

P ORTC[7:0]

PORTG.0

RESET

+5V

+3.3V

A D[7 :0]

A DDRE SS[15:8]

ALE
ALE

WR*
WR*

CONTROL

RD*
RD*

RESET
RESET

+5V

+3.3V

GND GND

CONTROL

DATA[7:0]

512KB

SRAM

ADDR[14 :0]

A18

A17

A16

A15

BSEL.3

BSEL.2

BSEL.1

BSEL.0

WR*

RD*

E N_RAM*

WR*

RD*

EN_RAM*

BUS_ DIR

RESET
MOSI

MISO

SCK

XMCRA.S RE = "1"

A [7:0]

P ORTG.1

PORTG.2

WR*

RD*

ALE

+3.3V +5V

V

B US LOGIC
VOLTAGE

MEGA2560

MEGA ADK

XMEM+

SCK

MOSI

MISO

S PI BUS

EXPANSION 

BUS

V

MISO



ⴠل

 

Page 3 

 

Key Features 
 
512KB External SRAM 
A standard MEGA provides only 8,192 bytes (8KB) of SRAM which must be divided 

amongst the stack, heap, and data purposes.  As an Arduino program grows in complexity 

available SRAM can be quickly used up.  Adding the XMEM+ to an Arduino MEGA 

system increases SRAM space by up to 512KB. The additional SRAM is organized as 16 
banks of 32KB each. The active bank is directly accessible within the MEGA memory 

space between address 0x2200 and 0xA1FF. All address and bank decoding is controlled 

by software using on-board High-Speed logic. The additional SRAM makes the MEGA 

much better suited and easier to use in applications requiring large amounts of fast 
memory such as buffering data before writing to an SD Card, servicing network 

communications, or generating graphic display information.   

 

Parallel Bus Expansion 
The XMEM+ provides the user with a fixed 23K byte area for connecting custom parallel 
type circuitry. Buffered Read, Write, Enable, Reset, 8-bit Data, and 16-bit Address 

signals are fully accessible for off-board prototyping.   This area is true Arduino memory, 

supporting all software instructions and running at full bus speed.  The logic voltage of 

the buffers can be set to operate at either 3.3V or 5V in order to perform proper 
translation when working with modern mixed voltage circuitry. 

 

Buffered SPI Signals 
As an additional benefit, the MOSI and SCK Serial-Peripheral-Interface (SPI a.k.a. ICSP) 

signals are also routed through buffers.  The ability to provide voltage translation from 

5V down to 3.3V is particularly handy when connecting to modern 3.3V only type SPI 
devices. 

 

Standard Arduino MEGA R3 Connector Layout 
The XMEM+ is the same overall size of a standard Arduino MEGA 2560 microcontroller 

board. The connector pattern  follows the R3 format and has been designed to plug 
directly on top by means of stack-through connectors. 

 

 

 



 

Page 4 

Component Identification 
Before putting the XMEM+ in to service is helpful to become familiar with it's various 

components. 

M7699-02

1 1 1

4 3 1 1 11

1

2

 
Figure 2 - Component Identification 

 

(1) Standard Arduino MEGA connections 

The XMEM+ features stack-though connectors which allows additional peripheral boards 

to be mounted on top of one another in a piggy-back arrangement. 

 

(2) Parallel Bus Expansion 

These connectors form the Parallel Bus Expansion (a.k.a. Expansion Bus) consisting of 

an 8-bit bi-directional Data bus, 16-bit Address bus, and Control signals. When 
prototyping external circuits, wires can be inserted in to these connectors to gain access 

to the individual signals. Most signals are buffered and the logic operating voltage is 

determined by the position of the Bus Logic Voltage Selection Jumper JP1 (3).   

 

(3) Bus Logic Voltage selection, JP1 

The Expansion Bus logic can be operated at either 3.3V or 5V depending on the 

requirements of the user's circuitry. 
 

 

The operating voltage for the Bus Logic must be carefully chosen to 
match the intended external circuitry.  Attempting to drive external 3.3V 

circuits with 5V can damage the circuitry and stress the XMEM+.  The 
buffers used on the XMEM+ when operated at 3.3V safely tolerate 5V 

signal levels coming from external circuitry. 

 

(4) Reset Push Button 
Momentarily pressing this button will reset the entire Arduino system. 



 

Page 5 

External Memory Interface 
Prior to using the XMEM+ as added SRAM and Parallel Bus Expansion the Arduino 

MEGA must be properly configured to operate in the External Memory mode. This is 
done by means of the XMCRA and XMCRB registers located within the Arduino 

MEGA microcontroller. 

 

XMCRA - External Memory Control Register A 0x0074 

The External memory mode is activated by setting the SRE bit of the XMCRA register. 

The default digital I/O functions of PORTA, PORTC, and PORTG are overridden to 

instead act as Data, Address, and Control signals. This register also controls how wait-
states will be applied.   

 
Bit 7 6 5 4 3 2 1 0   

(0x0074) SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00  XMCRA 

Read / Write R/W R/W R/W R/W R/W R/W R/W R/W   

Reset 0 0 0 0 0 0 0 0   

 
SRE External Memory Interface Enable 

Writing SRE to '1' enables the External Memory Interface. The pins performing as AD[7:0], 

A[15:8], WR*, RD*, and ALE are activated and their respective ports are no longer 

available as digital I/O. The SRE bit overrides any pin direction settings in the respective 

data direction registers. 

 
SRL[2:0] Wait-state Sector Limit 

It is possible to configure different wait-states for different External Memory addresses. The 

external memory address space can be divided in two sectors that have separate wait-states. 

The SRL2, SRL1, and SRL0 bits select the split of the sectors. By default, the SRL2, SRL1, 

and SRL0 bits are set to zero and the entire external memory address space is treated as one 

sector. When the entire external memory address space is configured as one sector, the wait-

states are configured by the SRW11 and SRW10 bits. 

 
SRW11 

SRW10 
Wait-state Select Bits for Upper Sector 
The SRW11 and SRW10 bits control the number of wait-states for the upper sector of the 

external memory address space.  

 
SRW01 

SRW00 
Wait-state Select Bits for Lower Sector 
The SRW11 and SRW10 bits control the number of wait-states for the lower sector of the 

external memory address space.  

 

 

XMCRB - External Memory Control Register B 0x0075 

This register controls additional features associated with the External Memory interface 

but not used by the XMEM+.  Always maintain the XMCRB register as 0x00. 

 
Bit 7 6 5 4 3 2 1 0   

(0x0075) XMBR
K 

- - - - XMM2 XMM1 XMM0
0 

 XMCRB 

Read / Write R/W R R R R R/W R/W R/W   

Reset 0 0 0 0 0 0 0 0   

 



ٌ낐

 

Page 6 

Expansion
Bus

XMEM+
REGISTERS

SRAM
32K Bytes

BANK-0

( Default )

SRAM
8,192 Bytes

0xFFFF

0xA200
0xA1FF

0x21FF

0x2200

0x0000

151 2

M7699-03

0xFF00

0xFEFF

External
Memory
Space

Internal
Memory
Space

.data

.bss

stack

heap

available
SRAM

MEGA

REGISTERS

0x0200
0x01FF

Example C code: 

 
 

Re-Assigned Digital I/O Ports 
When the External Memory Interface is activated, the microcontrollers digital I/O signals 
of PORTA, PORTC, and PORTG are used exclusively and no longer available for any 

other purpose.  The re-assigned functions of the ports are summarized in the following 

tables. 

 
PORTA PORTC PORTG 

Lower Address / Data (Multiplexed) Upper Address Control Signals 

MEGA digital 

I/O # 

New Use: 

AD[7:0] 

MEGA digital 

I/O # 

New Use: 

A[15:8] 

MEGA digital 

I/O # 

New Use: 

WR*, RD*, ALE 

22 PA.0 = AD0 37 PC.0 = A8 41 PG.0 = WR* 

23 PA.1 = AD1 36 PC.1 = A9 40 PG.1 = RD* 

24 PA.2 = AD2 35 PC.2 = A10 39 PG.2 = ALE 

25 PA.3 = AD3 34 PC.3 = A11 

26 PA.4 = AD4 33 PC.4 = A12 

27 PA.5 = AD5 32 PC.5 = A13 

28 PA.6 = AD6 31 PC.6 = A14 

29 PA.7 = AD7 

 

30 PC.7 = A15 

 

 

 

 

 

Chapter #9 of the Atmel 2560 data sheet (Atmel Document #2549Q–AVR) 
describes the External Memory Interface in great detail.  The user is 

encouraged to read this document to gain further understanding. 

 

 

Memory Map 
The XMEM+ appears in the MEGA memory 

directly after the internal memory. The resulting 

memory map, without the heap being relocated, is 
shown at the right. 

 

0x2200 - 0xA1FF - This 32K byte space is 

occupied by the XMEM+ SRAM banks.  Bank-0 
is the default bank and is automatically selected at 

reset. The other 15 banks are selected using the 

XMEM+ Bank Select (BSEL) register. 

 
0xA200 - 0xFEFF - Any users Parallel Bus 

Expansion circuitry occupies this 23K byte space.   

 

0xFF00 - 0xFFFF - This 256 byte area is reserved 

for XMEM+ registers. 

/*** Activate External Memory feature on Arduino MEGA ***/ 
XMCRB  =  0x00;    // All of all PORTC pins act as upper address lines, A[15:8], disable Bus keeper function  
XMCRA  =  0x80;    // Set SRE bit, Enable External Memory (SRAM and Expansion Bus), No wait states.  

Figure 3 - Memory Map 
 
( Shown with heap in default location without relocation ) 



 

Page 7 

SRAM 
The XMEM+ provides up to 512K bytes of SRAM to an Arduino MEGA.  The SRAM is 

organized as 16 banks of 32KB each. Only one bank may be active at a time and will 
always appear in the same memory range, between addresses 0x2200 - 0xA1FF. The 

default bank at power-on or system reset is automatically set to bank-0 by the on-board 

High-Speed logic. 

 

Arduino Memory Segments ( .data,  .bss,  heap,  stack ) 
In general, internal SRAM memory on an Arduino MEGA is divided amongst four 

different segments each used for specific purpose as summarized here. 
 

.data Stores initialized static variables 

The data segment variables are given a known value before the program begins running. The initial values 
for the data segment reside in non-volatile memory (i.e.; FLASH or EEPROM) and gets copied to the 

corresponding SRAM memory locations after reset but before program execution.  This is considered 
compile-time allocation as the software programmer has previously and consciously determined the type of, 

how many, and the initial values of the variables. 

 
int foo = 0x1234;  // Reserve an integer SRAM variable named foo. At reset it gets loaded with 0x1234 

 
 

.bss Stores uninitialized static variables 

Not all SRAM variables need to have values before a program begins running. For example, a display 
buffer might only requires some number of byte locations to be set aside and the buffer given a symbolic 

name.  It isn't important that the locations start with known values because the buffer will be populated with 
relevant data once the program executes and live display information is generated.  Also, data occupying the 

.bss segment does not use up non-volatile memory space to hold initialization values. This segment is also 

considered compile-time allocation as the software programmer determines the type of and how many 
variables will be needed. 

 
unsigned   char   dispbuf[16];      // Reserve 17 bytes of SRAM for a LCD, not Initialized 

 
 

heap Used for the dynamic allocation of memory  

The heap is a segment of SRAM that can be used to allocate large areas of SRAM memory for things like 
communication buffers or complex data structures. The allocation and management is done by the program 

as it executes.  It is suggested the heap be relocated to the XMEM+ SRAM.  
 

char * rx_buf  =  malloc(400);  // Allocate 400 bytes in heap for buffer, returns starting address of buffer 

 
 

stack Used dynamically as temporary storage by processor 

The stack segment stores temporary variables such as those created within functions and may also be used to 
retain critical program states before servicing an interrupt. The stack pointer starts at top of internal RAM 

and moves downward as it is used. The stack is automatically managed by the microcontroller's CPU and 
behaves like a First-in/Last-out data structure. For example, whenever a function declares a new variable, it 

is created ("pushed") on the stack and the stack pointer moves lower in SRAM. When the function exits, all 
of the variables that were temporarily created on the stack are deleted (i.e.; "popped") as the stack pointer 

moves back up. Those previously used memory locations are available for future stack variables. Because 

the stack is used so frequently and the internal SRAM run faster than external SRAM it is best to use internal 
SRAM for the stack. 

 



딐Ђ

 

Page 8 

Accessing and using the XMEM+ SRAM  
Once the External Memory Interface is activated the XMEM+ SRAM can be accessed 

and used in several ways: 
 

� Keep all memory segments, including the heap, at their default locations inside the microcontroller. 

Accessing the XMEM+ SRAM is done using pointers maintained by the programmer. 
 

� Relocate the heap segment to XMEM+ SRAM but use only the default bank-0 for an additional 32K 

bytes. 
 

� Relocate the heap segment to XMEM+ SRAM and use multiple banks by means of bank-switching. 
 

� Combine above methods to satisfy specific application needs. 
 

Use Internal Memory for heap 
The most basic method to access XMEM+ SRAM is by using pointers managed by the 

software programmer. The memory locations are considered private and exist outside the 

domain of the C compiler.  In this case, the .data, .bss, heap, and stack segments remain 

at their default locations inside the internal SRAM of the MEGA microcontroller. Any 
calls to dynamic memory routines will return pointers to locations within the internal 

heap space.  Multiple banks can be accessed using the Bank Select Register BSEL. 

 

Example C code: 

 
 

Relocate the heap to External Memory 
The preferred use of the XMEM+ SRAM is to relocate the heap. This is done by making 

changes to specific linker parameters or by software instructions during the Arduino 

setup() function. Beside increasing heap space, relocation also has potential benefit of 
allowing a deeper stack as it can now use the memory previously occupied by the heap. 

 

To facilitate relocating the heap by software two system variables exist which delineate 

its starting and ending addresses. On a stock Arduino MEGA these variables are 
automatically initialized to locations within the internal SRAM using addresses provided 

by the linker. However, the variables can be modified during runtime to instead use 

SRAM memory located on the XMEM+. 

 
__malloc_heap_start   This 16-bit system SRAM variable defines the starting address of the 

heap segment.  During initialization, just after reset, this variable is 

loaded with the linker generated value __heap_start. 

  __malloc_heap_end This 16-bit system SRAM variable defines the ending address of the heap 

segment.  During initialization, just after reset, this variable is loaded with 

the linker generated value __heap_end. 

 

 

Initial changes to these system variables should be done as early as practical in the 

programs execution, and definitely before making any function calls that would affect 

the heap such as malloc(),  calloc(), or free().  Also, Some library functions, notably 

those from the stdio.h, may use dynamic memory and should be avoided until the heap 

and banks have been properly setup. Subsequent changes during run-time must be 

carefully managed especially when performing bank switching. 

 

/*** Create a pointer and load the memory location ***/ 
char * my_pointer = (char *) = 0x2200;   // Point at a location in the XMEM+ memory space 
*my_pointer = 'A';          // Store the letter A (address 0x2200 contains 0x41, ASCII 'A') 



혠ـ

 

Page 9 

Example C code: 

 

 

If only the 32KB of bank-0 (default) will be used as heap space (no bank switching) then 

just __malloc_heap_start and __malloc_heap_end need to be changed. It is not necessary 

to manage the two other heap related system variables, namely __brkval and __flp.  See 

the accompanying example software for details. 

 
 

 

Using Memory Banks 
Some application may require more SRAM than can be satisfied with just the 32KB 

provided by the default bank-0. Bank Switching is a technique that allows the currently 
active memory space between 0x2200 and 0xA1FF to be swapped for other 32KB SRAM 

memory spaces, i.e.; bank. The Bank-Select Register within the XMEM+ High-Speed 

logic helps simplify the process. 

 

BSEL - Bank Select Register 0xFF01 

The Bank Select Register controls which one of the 16 possible 32KB RAM banks 
appears actively in the Arduino MEGA memory map.  Only one bank may be selected at 

a time but all are accessed individually within the same address space (0x2200 - 0xA1FF) 

when active.  The default bank at power-on or system reset is bank-0.   

 
Bit 7 6 5 4 3 2 1 0   

(0xFF01) 0 0 0 0 BSEL3 BSEL2 BSEL1 BSEL0  BSEL[3:0

] Read / Write R R R R R/W R/W R/W R/W   

Reset 0 0 0 0 0 0 0 0   

 
BSEL[3:0] These four bits are used to select which of the 16 possible 32KB RAM banks currently 

appears in the Arduino MEGA memory map between address 0x2200 - 0xA1FF.  

Interpreted collectively the BSEL bits form a binary number corresponding to the selected 

bank; where for example:  0000 = Bank-0;  1001 = Bank-9. These bit are reset at power-on 

or system reset. 

 
Bit[7:4] These bits are not used but should always be written as 0 for future compatibility. 

 

// Initialize the heap to reside in XMEM+ memory 
__malloc_heap_start  =  (char *) 0x2200;    // Relocate start of heap to start of XMEM+ SRAM 
__malloc_heap_end    =  (char *) 0xA1FF;    // Relocate end of heap to end of XMEM+ SRAM 



딐Ђ

 

Page 10 

 

Bank Switching Management 
When using bank switching it is imperative to maintain the exact system heap variables 
associated with each bank.  A structure such as the one show here is useful for saving the 

four critical heap variables. By repeating the structure in an array and employing two 

simple software routines, the heap variables for all the banks can be saved and restored in 

an organized and efficient manner, effectively creating up to 16 separate heaps. 
 

Example C code: 

 
 

 
 

 
 

An example program is available for the XMEM+ which suggests a method for handling 

bank switching.  The two key software functions it provides are described below.  Further 
information can be gleaned by studying the actual code. 
 

void begin( bool  heapInXmem_ ) 
This function MUST BE CALLED ONCE to activate the External Memory space and 

initialize the heap storage structures.  If heapInXmem is non-zero then the system 
parameters that control where the heap resides are changed to use the XMEM+ SRAM.  

 

Example C code: 

 

// Structure to hold critical heap variables 
struct heapState { 
  char *__malloc_heap_start;     // Stores starting address of heap space 
  char *__malloc_heap_end;       // Stores ending address of heap space 
  void *__brkval;                // Stores highest address used in heap 
  void *__flp;                   // Stores "Free-List" Data Structure  pointer 
} bankHeapStates[ 16 ];    // Create an array of this structure, one structure for each bank 

// Restore a bank heap variables 
void restoreHeap( uint8_t bank_ ) { 
  __malloc_heap_start   = bankHeapStates[ bank_ ].__malloc_heap_start; 
  __malloc_heap_end     = bankHeapStates[ bank_ ].__malloc_heap_end; 
  __brkval              = bankHeapStates[ bank_ ].__brkval; 
  __flp                 = bankHeapStates[ bank_ ].__flp; 
} 

// Save a bank heap variables 
void saveHeap( uint8_t   bank_ ) { 
  bankHeapStates[ bank_ ].__malloc_heap_start  = __malloc_heap_start; 
  bankHeapStates[ bank_ ].__malloc_heap_end    = __malloc_heap_end; 
  bankHeapStates[ bank_ ].__brkval             = __brkval; 
  bankHeapStates[ bank_ ].__flp                = __flp; 
} 

/******************************************************************************************* 
* Initial setup. You must call this once 
* heapInXmem_ 
*  If = 1 (true) then the Arduino heap starting and ending addresses are set to use the XMEM+ SRAM. 
*  If = 0 (false) the only the external memory interface is activated.  The heap address ARE  NOT  
*  reassigned to XMEM+ SRAM. 
*******************************************************************************************/ 
void begin( bool heapInXmem_ ) { 
 
  uint8_t   bank;    // Temp value used to identify current bank 
 
  // set up the xmem registers 
  // Activate external memory 
  XMCRB  =  0x00;    // All of all PORTC pins act as upper address lines, A[15:8], disable Bus keeper function  
  XMCRA  =  0x80;    // Set SRE bit, Enable xmem+, No wait states. If Wait-states are needed change this value accordingly 
 
  // initialize the heap states 
  if( heapInXmem_ ) { 
    __malloc_heap_end   =  static_cast <char *> (XMEM_END); 
    __malloc_heap_start =  static_cast <char *> (XMEM_START); 
  } 
 
  for(bank = 0; bank < MAX_BANKS_USED; bank++) 
    saveHeap( bank ); 
 
  // set the current bank to zero 
  setMemoryBank(0, false); 
} 



딐Ђ

 

Page 11 

void setMemoryBank( uint8_t  bank_,   bool  switchHeap_ ) 
This function is used to switch between banks.  The parameter bank_ determines which 

bank to make active (i.e.; appear between memory addresses 0x2200 and 0xA1FF). If the 

switchHeap_ parameter is non-zero (typically so) the heap settings for the currently 

active bank are saved, the new bank is made the active bank and the heap parameters 
associated with the new bank are recalled and used as the system heap variables. 
 

Example C code: 

 

/******************************************************************************************* 
* Set the memory bank - Call this to switch between the XMEM+ memory banks. 
*  
* bank_ 
*  Sets which bank to make active, valid range is 0 - 15  (0x00 - 0x0F) 
* 
* switchHeap_ 
*  If 1 (true) the currently active bank heap parameters are saved, the new bank_ is 
*   made active, and it's heap parameters are loaded as the Arduino system heap parameters. 
*  If 0 (false) the bank_ is switched but no changes to the Arduino heap parameters are made. 
******************************************************************************************/ 
void setMemoryBank(uint8_t   bank_,   bool switchHeap_) { 
 
   // check if requested bank is already active 
   if(bank_== *BSEL ) 
    return; 
 
   if( switchHeap_ ) 
   // Save heap state for the current bank if requested 
   {   
     saveHeap( *BSEL );      // Save the currently active heap parameters 
     *BSEL = bank_;          // switch in the new bank 
     restoreHeap( bank_ );   // Restore the heap parameters for this bank 
   } 
   else 
   // Just switch the bank, do not manage the heap parameters 
   { 
     *BSEL = bank_;          // switch in the new bank           
   } 
} 



딐Ђ

 

Page 12 

Parallel Bus Expansion 
The Parallel Bus Expansion (a.k.a. Expansion Bus) provides the user with a fixed 23K 

byte area for connecting custom parallel type circuitry.  Buffered Read, Write, Enable, 
Reset, 8-bit Data, and 16-bit Address signals are fully accessible for off-board 

prototyping. This area is true Arduino MEGA memory space directly supporting all 

software instructions and running at full bus speed. Optional Wait-States can be inserted 

to accommodate slower parallel devices. The operating logic level for all buffered signals 
is configurable as 3.3V or 5V in order to perform proper translation when working with 

modern mixed voltage circuitry. The External Memory Interface must be running for the 

Parallel Bus Expansion to operate. 

 

Data Bus 

D[7:0] - These eight signals form the Bi-Directional Data Bus for connecting to external 

hardware.  D0 is the least significant data bit. The data bus must be used in conjunction 
with the RD* (read), WR* (write), and EN* (enable) signals.   
 

Address Bus 

A[15:0] - These 16 signals form the Address Bus for connecting to external hardware. A0 

is the least significant address bit.  
 

Control Signals 

VBUS - This is the Bus logic supply voltage.  The voltage level can be selected as 3.3V or 

5.0V depending on the position of jumper JP1.  The user's external circuitry can be 

powered from this connection but current draw must not exceed 50ma. Both the 5.0V and 

3.3V are supplied directly from the Arduino MEGA2560. If higher currents are required 
the user's circuitry should employ its own regulated power supply operating at the same 

voltage as the Bus Logic JP1 setting.  
 

RD* - READ  Active Low. Any software Read operation executed within the address 

range of 0xA200 - 0xFEFF will pass a single byte from the external circuitry to the 

Arduino MEGA.  To be valid the RD* signal must be qualified with the EN* signal.  
 

WR* - WRITE  Active Low. Any software Write operation executed within the address 

range of 0xA200 - 0xFEFF will pass a single byte from the Arduino MEGA to the 

external circuitry. To be valid the WR* signal must be qualified with the EN* signal.  
 

EN* - ENABLE  Active Low. Any software operation (Write or Read) within the 

address range of 0xA200 to 0xFEFF will activate this signal. 
 

RESOUT - This an output only buffered version of the system reset signal. The  signal 

is active low during reset and normally idles high at the voltage level determined by the 

Bus Logic Voltage jumper setting, JP1. 
   

 

RESOUT is an Output Only signal designed to drive the reset inputs of external 

devices. Manually pulling this signal to ground by means of a switch or other 
circuitry can damage the RESOUT buffer. External system reset should only be 

performed by either pressing a reset button or by momentarily pulling the MEGA 

RESET signal to ground. 



딐Ђ

 

Page 13 

 
Write and Read Operations 
Circuitry connected to the Expansion Bus is accessed using pointers. In general, any valid 

pointer type and software technique can be used. However, read-modify-write operations 
require the externally connected hardware to be both readable and writeable. 
 

Example C code: 

 
Timing Diagram 
The basic timing diagram for the Expansion Bus is shown below. Key points are high-

lighted in yellow. 
 

� The WR* (Write) and RD* (Read) signals are only valid while the EN* (Enable) signal is low. The 

external circuitry should ignore WR* and RD* whenever EN* is at logic '1'. 
 

� EN* will only go low when the user's software addresses a location between 0xA200 and 0xFEFF.  

All other addresses cause the EN* signal to be logic "1". 

 
Figure 4 - Timing Diagram 

 

 

The de-multiplexing of the lower address bits A[7:0], shown as time period 

T2, is performed by the XMEM+ On-Board High-Speed logic. 

 

 

Chapter #9 of the Atmel 2560 data sheet (Atmel Document #2549Q–AVR) 
describes the External Memory Interface in great detail.  The user is 

encouraged to read this document to gain further understanding. 

// Activate external memory and expansion bus ( if not previously done ) 
XMCRB = 0x00;  // All of all PORTC pins act as upper address lines, A[15:8], disable Bus keeper function  
XMCRA = 0x80;  // Set SRE bit, Enable xmem+, No wait states. If Wait-states are needed change this value accordingly  
 
unsigned char *  pntr = (unsigned char *) 0xA200;    // Create a pointer to an 8-bit hardware location in Expansion bus 
unsigned char    var1;           // Create an 8-bit variable to hold data read from Expansion Bus 
 
*pntr = 0x55;  // Write 0x55 to address 0xA200  
var1 = *pntr;  // Read from address 0xA200 and store in var1 
*pntr |= 0x04; // Set bit#2 at address 0xA200 (Note: Requires hardware that is both readable and writable) 



 

Page 14 

Adding Wait-States for Accessing Slower Devices 
The XMEM+ uses High-Speed logic and components and is designed to operate at the 

full speed of the MEGA without the need for wait-states.  However, when connecting to 

slower devices it may be desirable or even necessary to add wait-states.   

 

Defining External Memory Sectors 
The default layout of the external memory space is to treat it as one sector, and without 

applying wait-states. However, the external memory space can be divided as two sectors 

each with their own wait-state timing.  The setting of the SRL[2:0] bits in the XMCRA 

register determines the address split of the two sectors.  As a practical matter, because the 
SRAM on the XMEM+ can operate at full speed it makes most sense to leave as much of 

it operating without wait-states.  The following table shows the various combinations 

available. 
 

External Memory Sectors 

SRL2 SRL1 SRL0 Sector Limits Comment 

0 0 0 
Lower sector = N/A 

Upper sector = 0x2200 - 0xFFFF 
Default 

Entire external memory treated as one sector 

0 1 0 
Lower sector = 0x2200 - 0x3FFF 
Upper sector = 0x4000 - 0xFFFF 

Not practical, SRAM can run at full speed 

0 1 1 
Lower sector = 0x2200 - 0x5FFF 
Upper sector = 0x6000 - 0xFFFF 

Not practical, SRAM can run at full speed 

1 0 0 
Lower sector = 0x2200 - 0x7FFF 
Upper sector = 0x8000 - 0xFFFF 

Not practical, SRAM can run at full speed 

1 0 1 
Lower sector = 0x2200 - 0x9FFF 
Upper sector = 0xA000 - 0xFFFF 

Affects some SRAM 0xA000 - 0xA1FF and 
entire Expansion bus and XMEM+ registers 

1 1 0 
Lower sector = 0x2200 - 0xBFFF 
Upper sector = 0xC000 - 0xFFFF 

Affects Expansion bus starting at 0xC000 
and the XMEM+ registers 

1 1 1 
Lower sector = 0x2200 - 0xDFFF 
Upper sector = 0xE000 - 0xFFFF 

Affects Expansion bus starting at 0xE000 
and the XMEM+ registers 

 

Setting Wait-State Timing 
Once the two sectors are determined appropriate wait-states are applied using the SRW 

bits within the XMCRA register. 
 

Wait States Selection bits 

SRWn1 SRWn0 Wait States 

0 0 Default, No wait-states 

0 1 Wait one cycle during read/write strobe 

1 0 Wait two cycles during read/write strobe 

1 1 Wait two cycles during read/write and wait one cycle before driving out new address 

  Note: n = 0 for lower sector,   n = 1 for upper sector 

 

 

 

Activating the External Memory Interface and applying Wait-States is most 

often done together by a single write to the XMCRA register during 
program initialization within setup().  



혠ـ

 

Page 15 

Hardware Examples 
 

82C55A Peripheral Interface 
This circuit illustrates connecting to a common 82C55A chip. 

This device provides 24 digital I/O channels that can be used to 

interface to keyboards, display, relays and more. The eight 
Data bits, Address signals, and Control signals connect directly 

to the corresponding signals of the XMEM+ expansion bus.  

However, because the RESET input of the 82C55A requires an 

opposite polarity of that provided by an Arduino, this example 
uses Arduino digital #7 signal for that purpose. 

 

In the software below the loop forms a simple binary counter 

whose values are written to PORTA. As a result PORTA.0 will 
toggle more frequently than PORTA.1; PORTA.1 more than 

PORTA.2 and so on.  PORTA.7 will toggle at the lowest 

frequency. Probing with an oscilloscope on any of the PORTA 
pins allows the toggling bits to be observed.   

 

Example C code: 

 

// This program uses the Expansion bus connected to an 82C55A Peripheral Interface chip.  In this example all ports of the 
// 82C555A are made to act as outputs but all valid configuration modes are supported, see the 82C55A data sheet for details.  
// Because the Expansion bus is so fast a 1 cycle wait-state is applied to reliably access the chip. 
 
// Setup Pointers to access the 82C55 Chip 
unsigned char *  PRTA = (unsigned char *) 0xA200;    // 82C55 PORTA Register 
unsigned char *  PRTB = (unsigned char *) 0xA201;    // 82C55 PORTB Register 
unsigned char *  PRTC = (unsigned char *) 0xA202;    // 82C55 PORTC Register 
unsigned char *  CTRL = (unsigned char *) 0xA203;    // 82C55 Control Register 
 
// Global variables created in .bss area 
char buf[80];  // A display buffer for using sprintf  
 
//************************************************************************ 
void setup() 
{ 
    // Activate external memory 
    XMCRB = 0x00;  // All of all PORTC pins act as upper address lines, A[15:8], disable Bus keeper function  
    XMCRA = 0xD4;  // Set SRE bit. Divide space in to two sectors; Lower sector 0x2200-0x9FFF, Upper sector 0xA000-0xFFFF 
                   //   Apply 1 wait state on Upper segment because the 82C55A is too slow for XMEM+ Parallel Expansion bus 
         
    // Setup 82C55 
    pinMode(7, OUTPUT);      // Digital #7 to be used as reset for 82C55A 
    digitalWrite(7, HIGH);   // Reset 82C55A 
    delay(25);               // wait ... 
    digitalWrite(7, LOW);    // Remove 82C55A reset 
         
    *CTRL = 0x8A;            // Configure all 82C55A ports as Outputs 
  
    Serial.begin(9600);      // Start serial communications for Arduino IDE debugging monitor 
     
    sprintf(buf,"Testing Expansion Bus"); 
    Serial.println(buf); 
} 
 
//************************************************************************ 
void loop() 
{ 
   unsigned char i, b; 
  
    for ( i = 0; i < 255; i++ )  // Make a binary counter  
    { 
       *PRTA = i;     // Write value to PORTA 
       b = *PRTA;     // Read back the PORT 
       
      // Compare and display error if mis-match is found 
      if ( i != b ) 
      { 
        sprintf(buf,"Fail: %02X != %02X", i, b);  // Display the mis-match error 
        Serial.println(buf); 
      } 
    } 
} 

82C55A

A0

A1

WR*

RD*

CS*

Peripheral Interface

VCC (+5V)

GND

RESET

XMEM+

Parallel Expansion Bus

To / From

External Circuitry

M7699-04

D0

D1

D2

D3

D4

D5

D6

D7

34

33

32

31

30

29

28

27

36

5

6

35

9

8

26

7

PORTA.0

PORTA.1

PORTA.2

PORTA.3

PORTA.4

PORTA.5

PORTA.6

PORTA.7

4

3

2

1

40

39

38

37

PORTB.0

PORTB.1

PORTB.2

PORTB.3

PORTB.4

PORTB.5

PORTB.6

PORTB.7

18

19

20

21

22

23

24

25

PORTC.0

PORTC.1

PORTC.2

PORTC.3

PORTC.4

PORTC.5

PORTC.6

PORTC.7

14

15

16

17

13

12

11

10

40 Pin DIP

A0

A1

WR*

RD*

EN*

DIG#7

GND

V BUS

D0

D1

D2

D3

D4

D5

D6

D7

JP1 = 5V

Figure 5 - 82C55A Circuit 



혠ـ

 

Page 16 

Address Decoding Circuits 
The expansion bus can address up to 23,808 (0x5D00) individual byte locations.  For 

simple experimentation, like in the previous example, the entire expansion bus space can 
be assigned to a single chip by means of the EN* signal.  However, this is very wasteful 

and not practical as circuitry complexity increases. When a design requires several chips 

to be enabled individually the expansion bus space must be sub-decoded.  The following 

examples shows  a few common ways this can be accomplished.  
 

 
 

This circuit uses a 74AHC138 chip to created eight 

separate enable signals.  Each output is active for 64 bytes 

within the address ranges shown. 

 

For example, if pointer PNTR was initialized to 0xA380 

the instruction *PNTR = 0xA5;  would cause output Y6 to 

go low during the time the value 0xA5 appears on the data 

bus and is written to address 0xA380. 
 

 

 

 

 
 

 
This circuit shows two 74AHC138 chips.  Both chips 

decode the same expansion bus address locations.  

However, because the WR* and RD* signals are used as 

additional qualifiers one chip decodes only write operations 

and the other decodes only read operations.  This circuit is 

most useful when connecting to uni-directional bus devices 
such a latches in the case of writes or tri-state buffers in the 

case of reads. 

 

 

74AHC138

A

B

A6

A7

3-Line to 8-Line Decoder

VCC (+5V)

GNDGND

VBUS

XMEM+
Parallel Expansion Bus

Enables To
External Circuitry

M7699-05

1

2

16

8

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

15

14

13

12

11

10

9

7

16 Pin DIP

JP1 = 5V

0xA200 - 0xA23F

CA8
3

0xA240 - 0xA27F

0xA280 - 0xA2BF

0xA2C0 - 0xA2FF

0xA300 - 0xA33F

0xA340 - 0xA37F

0xA380 - 0xA3BF

0xA3C0 - 0xA3FF

G2A*

G2B*

G1

4

5

6

EN*

74AHC138

A

B

A6

A7

3-Line to 8-Line Decoder

VCC (+5V)

GND

XMEM+

Paral lel  Expansion Bus
Write Strobes

1

2

16

8

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

15

14

13

12

11

10

9

7

16 Pin DIP

0xA200 - 0xA23F

CA8
3

0xA240 - 0xA27F

0xA280 - 0xA2BF

0xA2C0 - 0xA2FF

0xA300 - 0xA33F

0xA340 - 0xA37F

0xA380 - 0xA3BF

0xA3C0 - 0xA3FF

G2A*

G2B*

G1

4

5

6

EN*

A

B

VCC (+5V)

GNDGND

VBUS

Read Strobes

M7699-06

1

2

16

8

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

15

14

13

12

11

10

9

7

JP1 = 5V

0xA200 - 0xA23F

C
3

0xA240 - 0xA27F

0xA280 - 0xA2BF

0xA2C0 - 0xA2FF

0xA300 - 0xA33F

0xA340 - 0xA37F

0xA380 - 0xA3BF

0xA3C0 - 0xA3FF

G2A*

G2B*

G1

4

5

6

WR*

RD*

74AHC138
3-Line to 8-Line Decoder

16 Pin DIP

Figure 6 - Address Decoder 

Figure 7 - Write / Read Decoder Circuitry 



혠ـ

 

Page 17 

SPI Bus Signals 
The Expansion Bus also provides access the Serial-Peripheral-Interface signals (a.k.a. 

ICSP).  

  

MISO - Master-In-Slave-Out 
This is an un-buffered signal routed directly to the Arduino Mega. The external circuitry 
drives this signal to send serial data to the Arduino. 

  

MOSI - Master-Out-Slave-In 
This is a buffered version of the MOSI signal originating from the Arduino and operates 

at the voltage determined by the Bus Logic Voltage jumper setting, JP1.  Serial data is 

transmitted from the Arduino to the external circuitry on this signal. 
 

SCK - Serial Clock 
This is a buffered version of the SCK signal originating from the Arduino and operates at 

the voltage determined by the Bus Logic Voltage jumper setting, JP1.  The SCK signal is 

used to synchronously pace the data serially sent over the MOSI and MISO SPI bus 
signals. 

 

 

 



 

Page 18 

Specifications 
 
Description: Add-on board for Arduino (Genuino) MEGA 2560 and MEGA ADK. 

  Provides up to 512K SRAM plus True Parallel Bus Expansion capability. 

 
SRAM:  512K bytes total additional SRAM. Organized as 16 Banks of 32K each. 

 
Speed:   Supports full Arduino bus speed, typically 16MHz system clock, No Wait-States. 

  Wait-States are optionally programmable via software. 

 
Expansion Bus: Addressable Space: 23KB (23,808 bytes) 

  Logic: Buffered, Jumper selectable Logic Level 

Signal Function Direction Signal Name 

Data: Bi-Directional D[7:0] 
Address: Output A[15:0] 

Control: Output WR*, RD*, EN*, Reset-Out 

Bus Logic Voltage: Output VBus, Jumper selectable as 3.3V or 5V 

 
Digital Logic Levels: 

Parameter JP1 = 3.3V JP1 = 5.0V 

VIL  0.9V Max. 1.5V Max. 

VIH 2.3V Min.,  5V Tolerant 3.5V Min. 

VOUT 

 

0V Min. 

3.3V Max. 

0V Min. 

5V Max. 

 

 
SPI (ICSP): MOSI - Master Out Slave In, Buffered, Jumper selectable 3.3V or 5V 

  MISO - Master In Slave Out, Non-Buffered 

  SCK - Clock, Buffered, Jumper selectable 3.3V or 5V 

 
 

Arduino Connections: Long-Lead Stack-through connectors accommodates additional shields. 

   All connections accept 0.025" sq. leads and prototype wires. 

   Power: 8 Pos. x 1 Row 

   Analog: 8 Pos x 1 Row (2) 

   Digital: 8 Pos x 1 Row (2), 10 Pos. x 1 Row, 18 Pos. x 2 Row 

   ICSP: 3 Pos x 2 Row 

Power 

Requirement: Arduino Supplied, 3.3V and 5V 
 
Dimensions:  2.10"W x 4.0"L x 0.75"H overall.  Arduino Mega R3 format 

 
Environmental: Operating temperature:  0°C to 70°C  

                          Non-condensing relative humidity: 5% to 95% 

 
Compliance: RoHS 

 

Product Origin: Designed, Engineered, and Assembled in U.S.A. by SCIDYNE® Corporation 

  using domestic and foreign components. 



删ك

 

Page 19 

Appendix-A: Schematic Diagram 

 



衆  ⴠɔ M

 

Page 20 

User Notes 

 


