

USER’S REFERENCE MANUAL

MULTI-I/O-ARD
Analog and Digital I/O

Shield for Arduino and Compatibles

Model No. 100-7714

Doc. No. M7714 Rev: 1.01 12/11/23

649 School Street / Pembroke, MA 02359 USA / Tel: (781) 293-3059

www.scidyne.com

© Copyright 2023

SCIDYNE Corporation

“All Rights Reserved”

Previous revision: None

DISCLAIMER:

This document contains proprietary

information regarding SCIDYNE and

its products. The information is

subject to change without notice.

SCIDYNE makes no warranty of any

kind with regard to this material,

including but not limited to, the

implied warranties of merchantability

and fitness for a particular purpose.

SCIDYNE shall not be liable for errors

contained herein or for incidental or

consequential damages in connection

with the furnishing, performance, or

use of this material. No part of this

document may be duplicated in any

form without prior written consent of

SCIDYNE.

WARRANTY:

SCIDYNE warrants this product

against defects in materials and

workmanship and, that it shall conform

to specifications current at the time of

shipment, for a period of one year from

date of shipment. Duration and

conditions of warranty may be

superseded when the product is

integrated into other SCIDYNE

products. During the warranty period,

SCIDYNE will, at its option and

without charge to Buyer, either repair

or replace products which prove

defective. Repair or replacement of a

defective product or part thereof does

not extend the original warranty

period.

WARRANTY SERVICE:

For warranty service or repair, this

product must be returned to a service

facility designated by SCIDYNE. The

Buyer must obtain prior approval and a

Return Material Authorization (RMA)

number before returning any products.

The RMA number must be clearly

visible on the shipping container. The

Buyer shall prepay shipping and

insurance charges to the service

facility and SCIDYNE shall pay

shipping and insurance charges to

Buyer’s facility for products repaired

or replaced. SCIDYNE may, at its

discretion, bill the Buyer for return

shipping and insurance charges for

products received for repair but

determined to be non-defective.

Additionally, the Buyer shall pay all

shipping charges, duties and taxes for

products returned to SCIDYNE from

another country.

LIMITATION OF WARRANTY:

The forgoing warranty shall not apply

to defects resulting from improper or

negligent maintenance by the Buyer,

Buyer-supplied products or

interfacing, unauthorized

modifications or misuse, operation

outside the published specifications of

the product or improper installation

site preparation or maintenance, or the

result of an accident. The design and

implementation of any circuit using

this product is the sole responsibility of

the Buyer. SCIDYNE does not

warrant the Buyer’s circuitry or

malfunctions of SCIDYNE products

that result from the Buyer’s circuitry.

In addition, SCIDYNE does not

warrant any damage that occurs as a

result of the Buyer’s circuit or any

defects that result from Buyer-supplied

products. This Warranty does not

cover normal preventative

maintenance items such as fuse

replacement, lamp replacement,

resetting of circuit breakers, cleaning

of the Product or problems caused by

lack of preventative maintenance,

improper cleaning, improper

programming, or improper operating

procedures. No other warranty is

expressed or implied. SCIDYNE

specifically disclaims the implied

warranties of merchantability and

fitness for a particular purpose. Some

states do not permit limitation or

exclusion of implied warranties;

therefore, the aforesaid limitation(s) or

exclusion(s) may not apply to the

Buyer. This warranty gives you

specific legal rights and you may have

other rights which vary from state to

state.

CERTIFICATION:

Testing and other quality control

techniques are utilized to the extent

SCIDYNE deems necessary to support

this warranty. Specific testing of all

parameters is not necessarily

performed, except those mandated by

government requirements.

30-DAY PRODUCT

EVALUATION POLICY:

SCIDYNE offers a no-risk trial for

initial, low quantity, evaluation

purchases. Items purchased for

evaluation can be returned within 30

days of purchase for a full refund less

shipping charges. The Buyer must

obtain a Return Material Authorization

(RMA) number before returning any

products. The entire package,

including hardware, software,

documentation, discount coupons and

any other accessories supplied must be

returned intact and in new and working

condition. This policy will not be

honored for packages that are not

returned complete and intact. The

Buyer shall prepay shipping and

insurance charges to SCIDYNE. To

expedite the return process, the RMA

number must be clearly visible on the

shipping container. SCIDYNE will

cancel the invoice, refund by check or

issue credit to your credit card within

10 days after receipt of returned

merchandise.

LIFE SUPPORT POLICY:

Certain applications may involve the

risks of death, personal injury or severe

property or environmental damage

(“Critical Applications”).

SCIDYNE products are not designed,

intended, authorized or warranted to be

suitable for use in life-support

applications, devices or systems or

other critical applications without the

express written approval of the

president of SCIDYNE.

Table of Contents

Conventions and Terminology used in this publication ... 3

Safety and Usage Conventions ... 3

Terminology .. 3
Introduction ... 4

Key Features ... 4

Component Identification ... 5
Operating Voltage ... 6
I2C Addresses .. 6

Digital Input / Output .. 7
Setting the Digital I/O I2C address.. 8

Digital I/O Software example ... 9
Analog Inputs .. 9

Setting the Analog Input I2C addresses .. 11
Data Format .. 11
Single-Ended and Differential Measurements .. 12
Analog Input Software Example ... 12

Analog Outputs ... 13
Setting the Analog Output I2C addresses .. 14
Analog Output Software Example .. 14

Interrupts ... 15
Host Interrupt Selection .. 15

Appendix - A J1, Input / Output Connections ... 16
Appendix - B Specifications .. 17
User Notes ... 18

Conventions and Terminology used in this publication

Safety and Usage Conventions

Note:

Provides important information and useful tips that will assist in

the understanding and operation of this product.

Caution:

Calls attention to a procedure, practice, or condition that could

possibly cause equipment damage or bodily injury.

Danger:

Calls attention to a procedure, practice, or condition that is likely

to cause extensive equipment damage, severe bodily injury, or

death if not observed.

Terminology

Logic Conditions

Unless otherwise noted, logic signals are designated as TRUE (Set) and FALSE (Clear). Names with an

asterisk (*) postscript or overlined are inverted or active low. Unless otherwise noted TRUE is considered

logic '1' (Positive Voltage, +5Vdc or +3.3Vdc) and FALSE is considered logic '0' (0Vdc).

Numbering Systems

Computerized equipment often requires its numeric data to be represented in different forms depending

on the audience and information being conveyed. Decimal numbers are typically used for end-user data

entry and display while internally these values are converted and manipulated in native binary.

Hexadecimal numbers are often used by programmers as an intermediate level between binary and decimal

notations.

Base Name Format (MS ←−−→ LS)

2 Binary 0b10111001 or 1011 10012

10 Decimal 185

16 Hexadecimal 0xB9 or B916 or HB9

Multi-Byte Word Formats

In this document multi-byte values are shown as 0x1234 where 12 represents the most-significant byte

and 34 is the least significant byte. Depending on your particular system the values could be internally

stored as little-endian or big-endian.

MULTI-IO-ARD

Rev 1.01
Page 4 of 19

Introduction

The MULTI-IO-ARD is an Arduino peripheral board designed to satisfy common analog

and digital input/output requirements in a broad range of embedded applications. The

hardware has been engineered to operate at either 3.3V or 5V making it compatible with

common microcontroller boards such as Arduino Uno, Mega, Due, Giga, Adafruit Metro,

SparkFun Red Board, and numerous others. In many instances, the MULTI-IO-ARD will

be the only peripheral board needed.

The purpose of this manual is to provide basic insight of the hardware and fundamental

software concepts needed to apply the MULTI-IO-ARD. The reader is encouraged to

refer to the actual chip manufacturers data sheets for detailed understanding of the

features and capabilities of the devices used.

Key Features

• Standard Arduino R3 hardware footprint

• Support libraries from Adafruit, SparkFun, and others

• Selectable 3.3V or 5V operating voltage

• Low Power requirement

• I2C interface, Up to 1.7Mbps

• 16 Digital Input / Output channels
− MCP23017 Chip

− All channels are bi-directional

− Programable pull-up resistors

− Change-of-State and pattern matching interrupt capability

• Eight Analog Inputs
− Two ADS1115 Chips

− 16-Bit Resolution

− Input ranges from ±256 mV to ±6.144 Volts

− Single-Ended and Differential modes

− Comparator detects under/over voltage measurements

• Eight Analog Outputs
− Two MCP4728 Chips

− 12-Bit Resolution

− EEPROM retains last output voltage at Power-Up

• Optional Stemma QT / Qwiic and nodeLynk connectors for driving

external hardware

Figure 1 – MULTI-IO-ARD Simplified Block Diagram

MULTI-IO-ARD

Rev 1.01
Page 5 of 19

Component Identification

To properly apply the MULTI-IO-ARD it is necessary to become familiar with its various

components. The following figure and accompanying table briefly describe their functions

and locations. Subsequent sections of this manual explain their purpose and configurations

in greater detail.

Figure 2 – MULTI-IO-ARD Component Identification

1 I/O connector (J1)

This 40-pin IDC header is used to connect the

MULTI-IO-ARD to external devices. Please

refer to Appendix-A for wiring information.

 6 Optional Qwiic Connector (J4)

This connector allows standard Stemma QT / Qwiic[1]

devices to be connected through the MUTI-IO-ARD board.

2 I2C Pull-Ups (J2)

These jumpers enable optional Pull-Up resistors

on the SDA and SCL signals. Only one set of

Pull-Up resistors should be used on any I2C bus

segment and generally at the furthest point. The

Pull-Ups are referenced to V+ as determined by

J9

 7 Optional ICSP Stackthrough connector

An optional 2x3 header can be installed to pass-through

ICSP signals from a lower board to one attached above.

Only the connectors ground signal (Pin#6) is connected to

the ground signal of MULTI_IO-ARD circuitry.

3 RESET Push Button

Momentarily pressing this button will reset the

entire Arduino system.

 8 Optional nodeLynk Connector (J8)

This connector allows external device supporting the

nodeLynk[1] interface to be driven from the MULTI-IO-

ARD.

4 Digital I/O Address (J5)

This jumper block determines the address of the

Digital I/O chip on the I2C bus.

 9 I/O Voltage Selection (J9)

The operating voltage for the MULTI-IO-ARD is set by

this jumper. Default position is 3.3V.

Note: The voltage MUST match the operating voltage of

the device the MULTI-IO-ARD is plugged in to. Failure to

do so could damage either or both boards.

5 Interrupt configuration jumpers (J3)

This jumper block sets which interrupt sources

will be used by the MULTI-IO-ARD to request

interrupt service from the host.

 10,11 Analog Input Address (J6, J7)

These two jumper blocks determine the address of the

Analog Input (ADC) chips. Jumper J6 Sets the address for

AICH-0 to AICH-3; Jumper J7 Sets the address for AICH-4

to AICH-7.

 12,13 DAC Address Programming (AP0, AP1)

The I2C addresses of the two DAC chips are changed using

these hardware points and special programming software.

AP0 is used to program DAC0, AP1 is used to program

DAC1.
1) Stemma QT / Qwicc and nodeLynk are peripheral hardware buses based on I2C communications. Popularized by Adafruit,

SparkFun, National Control Devices and other third parties.

MULTI-IO-ARD

Rev 1.01
Page 6 of 19

Operating Voltage
The MULTI-IO-ARD circuitry can operate at either 3.3V or 5V. This ability allows its use

with a wide variety of microcontroller boards and compatible hardware including those

based on FPGAs. The operating voltage determines the logic levels of the signals between

the MULTI-IO-ARD and host as well as the logic levels of any external circuitry connected

through connectors J1, J4, and J8.

Place jumper J9 to either the 3.3V or 5V position to set the +VIOBUS operating voltage.

The operating I/O voltage of the MULTIO-IO-ARD must be properly

configured to match that of the host microcontroller board. A

mismatch could permanently damage the MULTI-IO-ARD, the

microcontroller board, or both devices.

If relocating the MULTI-IO-ARD to a different system this prerequisite

must be verified and the J9 I/O Voltage jumper changed if necessary.

The source of the 3.3V and 5V operating power is derived from the host.

The MULTI-IO-ARD does not possess any on-board power supply

regulation or current limiting circuitry.

I2C Addresses
A host uses I2C to communicate to the MULTI-IO-ARD circuitry. To operate correctly,

each device on the I2C bus must have a unique address. The five circuits and their default

addresses used by MULTI-IO-ARD are summarized in the following table. Device

addresses can be changed but devices cannot be disabled or removed from the I2C bus.

Subsequent sections of this document describe the devices and their addresses in more

detail. Jumper block J2 allows optional 4.7K Pull-Up resistors to be enabled on the SDA

and SCL signals.

I2C Addresses used by the MULTI-IO-ARD

Circuit

Function
Device

Factory

Default

Address

Possible

Addresses
Comment

Digital

I/O

PA0 – PA7, PB0 – PB7

(DIO0, MCP23017, U1)
0x20 0x20 – 0x27 Change by jumper block J5

Analog

Inputs

AICH0 – AICH3

 (ADC0, ADS1115, U4)
0x48

0x48 – 0x4B

Change by jumper block J6

AICH4 – AICH7

 (ADC1, ADS1115, U5)
0x49 Change by jumper block J7

Analog

Outputs

AOCH0 – AOCH3

(DAC0, MCP4728, U2)
0x60

0x60 – 0x67

Change by re-programming

AOCH4 – AOCH7

(DAC1, MCP4728, U3)
0x61 Change by re-programming

MULTI-IO-ARD

Rev 1.01
Page 7 of 19

Digital Input / Output

The MULTI-IO-ARD module uses an industry standard MCP23017 I/O Expander chip to

provide 16 non-isolated digital Input/Output channels across two 8-bit ports. This device

is very versatile and offers flexible configurations, including software programable channel

directions and interrupt-driven change-of-state and pattern matching functions. Each

channel features TTL/CMOS compatible signal levels and ±25mA drive capability. In

addition, software programmable weak pull-up resistors are available on any of the

channels. This feature makes sensing open-collector, switches, and contact-closure type

devices simple and straight-forward. All channels default to inputs during system reset.

The digital I/O circuitry cannot be disabled.

Digital I/O circuitry highlights:

• 16 I/O channels organized as two 8-bit ports

• Individually programmable channel direction

• Programmable weak Pull-Ups resistors

• Change of State and pattern matching

interrupt capability

• Programmable read polarity

Figure 3 - Digital I/O Block Diagram

External components attach to the MULTI-IO-ARD through pins of connector J1. Please

refer to Appendix-A to determine all signal locations. A companion terminal board

(SCIDYNE PN 100-7625/40) is available to make field wiring easier.

MULTI-IO-ARD

Rev 1.01
Page 8 of 19

Setting the Digital I/O I2C address
The default I2C address of the MCP23017 chip is 0x20. Jumper block J5 allows the address

to be changed as shown below. Since the address is most often a one-time setup fixed wire

jumpers are typically soldered in place. However, if the address will be changed frequently

a 2x3 header can be installed and moveable shorting shunts used to conveniently modify

the address as needed.

J5 Address Settings
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

A0 ⃝ ⃝

A1 ⃝ ⃝

A2 ⃝ ⃝

Factory Default

No jumpers installed

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

To prevent conflicts, each device residing within the 0x20 – 0x27

address range must have a unique address on the I2C bus segment they

share.

MULTI-IO-ARD

Rev 1.01
Page 9 of 19

Digital I/O Software example
This example shows a basic use of the MULTIO-IO-ARD Digital I/O circuitry.

Please refer to the MCP23017 manufacturer’s data sheet

for complete hardware and software information related to this device.

/*
 * SCIDYNE Corporation, Oct 12, 2021, Mark Durgin
 * Simple digital I/O demo program for MULTI-IO-ARD PN #100-7714
 * - Repeatedly writes pattern of alternating 0's and 1's to Port-A of the MCP23017 chip
 * Use an oscilloscope to observe results
 * - Reads state of Port-B and prints to serial monitor. Short pins to ground to cause changes
 */
#include <Wire.h> // Needed for Arduino I2C support

/*
 * Program constants and defines
 */
#define MCP23017_ADDRESS 0x20 // Chip Address A0 = A1 = A3 = GND.

// Define the MCP23017 registers to be used. See MCP23017 data sheet for details
#define MCP23017_IODIRA 0x00 // MCP23017 Port-A Data Direction Register
#define MCP23017_GPIOA 0x12 // MCP23017 Port-A Data register
#define MCP23017_IODIRB 0x01 // MCP23017 Port-B Data Direction Register
#define MCP23017_GPIOB 0x13 // MCP23017 Port-B Data register
#define MCP23017_GPPUB 0x0D // MCP23017 Port-B Pull-Up enable register

/*
 * setup runs once then execution goes to loop
 */
void setup()
{
 Wire.begin(); // Setup I2C communications

 Serial.begin(9600); // Setup communications to IDE Monitor
 while (!Serial);

 // Setup MCP23017 Port-A as all outputs
 Wire.beginTransmission(MCP23017_ADDRESS); // Open I2C communication with the MCP23017
 Wire.write(MCP23017_IODIRA); // Next byte intended for Port-A direction register
 Wire.write(0x00); // Make all outputs, Bits set as 0 are outputs
 Wire.endTransmission(); // Close I2C communications

 // Setup MCP23017 Port-B as all inputs
 Wire.beginTransmission(MCP23017_ADDRESS); // Open I2C communication with the MCP23017
 Wire.write(MCP23017_IODIRB); // Next byte intended for Port-B direction register
 Wire.write(0xFF); // Make all inputs, Bits set as 1 are inputs
 Wire.endTransmission(); // Close I2C communications

 Wire.beginTransmission(MCP23017_ADDRESS); // Open I2C communication with the MCP23017
 Wire.write(MCP23017_GPPUB); // Next byte intended for Port-B Pull-Up register
 Wire.write(0xFF); // Bits set as 1 enable corresponding pull-up
 Wire.endTransmission(); // Close I2C communications

}

/*
 * loop runs continuously
 */
void loop()
{
 // Toggle bit pattern on Port-A
 Wire.beginTransmission(MCP23017_ADDRESS); // Open I2C communication with the MCP23017
 Wire.write(MCP23017_GPIOA); // Next byte intended for Port-A data register
 Wire.write(0xAA); // Make Port-A = 1 0 1 0 1 0 1 0
 Wire.endTransmission(); // Close I2C communications

 delay(100); // Wait 100ms

 Wire.beginTransmission(MCP23017_ADDRESS); // Open I2C communication with the MCP23017
 Wire.write(MCP23017_GPIOA); // Next byte intended for Port-A data register
 Wire.write(0x55); // Make Port-A = 0 1 0 1 0 1 0 1
 Wire.endTransmission(); // Close I2C communications

 delay(100); // Wait 100ms

 // Read the the state of Port-B and display on Arduino IDE Serial Monitor
 Wire.beginTransmission(MCP23017_ADDRESS); // Open I2C communication with the MCP23017
 Wire.write(MCP23017_GPIOB); // Read will be from Port-B data register
 Wire.endTransmission();

 Wire.requestFrom(MCP23017_ADDRESS, 1); // Request 1 byte from the MCP23017
 unsigned char x = Wire.read(); // Receive the Port-B byte and store in x
 Serial.println(x); // Print the character

 delay(100); // Wait 100ms

}

MULTI-IO-ARD

Rev 1.01
Page 10 of 19

Analog Inputs

Two ADS1115 Analog-to-Digital Converter (ADC) chips serve to implement the eight

analog inputs. The analog input signals are routed to connections on the 40-position IDC

header, J1. Please refer to Appendix-A to determine all signal locations.

All analog input signals are non-isolated and share the same ground

potential as the digital circuitry and host. However, the physical ground

signals associated with the analog circuitry have been meticulously

routed on the MUTI-IO-ARD. Ideally, when attaching external analog

input circuitry, keep Analog Ground (AGND) and Digital Ground

(DGND) separated to obtain the best measurement performance.

Analog Input circuitry highlights:

• Eight Analog Inputs

• 16-Bit resolution

• Input ranges from ±256 mV to ±6.144 V

• Single-Ended and Differential modes

• Programmable Data Rate: 8 SPS to 860 SPS

• Fast Single-Cycle Settling

• Digital Comparator for Over/Under voltage measurements

• Internal Low-Drift voltage reference

Figure 4 – Analog Inputs Block Diagram

MULTI-IO-ARD

Rev 1.01
Page 11 of 19

Setting the Analog Input I2C addresses
Each ADC chip must have a unique address on the I2C

bus. The default address of the first ADC chip

(ADC0), serving Analog Input channels 0 to 3, is

0x48 and is set by jumper block J6. The default

address for the second ADC chip (ADC1), serving

Analog Input channels 4 to 7, is 0x49 and is set by

jumper block J7. The Analog Input circuitry cannot

be disabled.

Since the addresses are most often a one-time setup

fixed wire jumpers are soldered in place. However, if

the addresses will be changed frequently 2x4 headers

can be installed and moveable shorting shunts used to

conveniently set the addresses as needed.

To prevent conflicts, each device residing within the 0x48 – 0x4B

address range must have a unique address on the I2C bus segment they

share.

Please refer to the ADS1115 manufacturer’s data sheet

for complete hardware and software information related to this device.

Data Format
The ADS1115 provide 16-bits of data in binary two's complement format. A positive Full-

Scale (+FS) input produces an output code of 7FFFh and a negative Full-Scale (–FS) input

produces an output code of 8000h. The output clips at these codes for signals that exceed

full-scale. The following table summarizes the ideal output codes for different input

signals.

Input Signal Versus Ideal Output Code

Input Signal

VIN = (VAINP – VAINN)

Ideal Output Code
(Excludes the effects of noise, INL, offset, and gain errors)

≥ +FS (215 – 1) / 215 0x7FFFh

+FS/215 0x0001h

0 0x0000h

–FS/215 0xFFFFh

≤ –FS 0x8000h

Single-ended signal measurements, where VAinN = 0 V and VAinP = 0 V

to +FS, only use the positive code range from 0000h to 7FFFh.

However, because of device offset and other effects, the ADS1115 can

still output negative codes when an analog input is close to 0 V.

Analog Input I2C address settings
Default positions shown

 J6
AI 0 - 3

0x4B ⃝ ⃝

0x4A ⃝ ⃝

0x49 ⃝ ⃝

0x48 ⃝ ⃝

J7
AI 4 - 7

⃝ ⃝ 0x4B

⃝ ⃝ 0x4A

⃝ ⃝ 0x49

⃝ ⃝ 0x48

MULTI-IO-ARD

Rev 1.01
Page 12 of 19

Single-Ended and Differential Measurements
Prior to each conversion the ADS1115 is instructed to perform either a Single-Ended or

Differential measurement. This is done using the Multiplexer bits within the configuration

register of ADC0 or ADC1. Details can be found in the ADS1115 datasheet.

The table below summarizes the relationship between the two ADS1115 chips,

measurement type, and their physical locations on the J1 connector.

Input multiplexer configuration

Measurement
Type

MUX[2:0]

ADC0 ADC1

AICH0

J1-10

AICH1

J1-9

AICH2

J1-8

AICH3

J1-7

AICH4

J1-6

AICH5

J1-5

AICH6

J1-4

AICH7

J1-3

Differential

0 0 0 AINP AINN AINP AINN

0 0 1 AINP AINN AINP AINN

0 1 0 AINN AINN AINN AINN

0 1 1 AINP AINN AINP AINN

Single-Ended(2)

1 0 0 AINP AINP

1 0 1 AINP AINP

1 1 0 AINP AINP

1 1 1 AINP AINP

1. AINP is the Positive voltage input and AINN is the Negative voltage input to the Programmable Gain Amplifier.

2. When configured for Singled-Ended measurements, AINN of the Programmable Gain Amplifier is connected to

Analog Ground by the MULTI-IO-ARD hardware.

Analog Input Software Example

/*
 * SCIDYNE Corporation, Oct 14 2021 Mark Durgin
 * Analog Input demo program for MULTI-IO-ARD PN #100-7714
 *
 * Display Single-Ended conversions of Analog Inputs Channels 0 - 7
 * Results displayed on Arduino IDE Serial Monitor
 * See ADS1115 datasheet for details of setup and operation
 */

/*
 * Important include files
 */
#include <Wire.h> // Needed for Arduino I2C support

/*
 * Prototypes
 */
uint16_t readADC (unsigned char channel); // Digitize an analog input channel, return 16-bit result

/*
 * Program constants and defines
 */
#define ADS1115_0_ADDRESS (0x48) // I2C Address of first ADS1115, AICH0 - AICH3
#define ADS1115_1_ADDRESS (0x49) // I2C Address of second ADS1115, AICH4 - AICH7

#define ADS1X15_REG_POINTER_CONVERT (0x00) // ADS1115 internal Conversion Register
#define ADS1X15_REG_POINTER_CONFIG (0x01) // ADS1115 internal Configuration Register

/*
 * setup runs once then execution goes to loop
 */
void setup()
{
 Wire.begin(); // Setup I2C communications

 Serial.begin(9600); // Setup communications to IDE Monitor
 while (!Serial);
}

/*
 * loop runs continuously
 * Digitaize each Analog Input channel and display results on
 * Arduino IDE Serial Monitor.
 */
void loop()
{
 uint16_t i; // loop and channel variable
 uint16_t result; // Holds 16-bit ADC conversion result

 for (i = 0; i < 8; i++)
 {
 result = readADC(i);
 Serial.print("Channel-");
 Serial.print(i);
 Serial.print(": ");
 Serial.println(result,HEX);

 }

 Serial.println("-----------------");
 delay(1000);
}

/*
 * Read an ADC Channel
 * Call with desired channel, Returns signed 16-bit result
 */
uint16_t readADC (unsigned char AIchannel)
{
 uint16_t var = 0x0000; // 16-bit temp stoarge variable
 uint16_t config_var; // Used to build configuration register bits
 uint8_t ads1115_address; // Holds I2C address of ADS115 being accessed

 // Assure AIchannel is within valid range of 0-7
 AIchannel &= 0x07;

 // Determine which ADS1115 chip will be used
 ads1115_address = (AIchannel > 3) ? ADS1115_1_ADDRESS : ADS1115_0_ADDRESS;

 // Build the 16-bit ADS1115 Configuration Register, see ADS1115 data sheet for details
 config_var =
 (0x0003) | // Bit 0..1 Disable the comparator (default val)
 (0x0000) | // Bit 2 Non-latching (default val)
 (0x0000) | // Bit 3 Alert/Rdy active low (default val)
 (0x0000) | // Bit 4 Traditional comparator (default val)
 (0x0080) | // Bit 5..7 Samples-per-second rate, 128 samples-per-second (default)
 (0x0100) | // Bit 8 Single-shot mode (default)
 (0x0400) | // Bit 9..11 Set input voltage range, default is +/- 2.048 Volts
 /* Set below */ // Bit 12..13 Mux Channel
 (0x4000) // Bit-14 Single-Ended / Differential Mode
 /* Set below */ ; // Bit 15 Write: Single-Shot start, Read: Conversion status

 // Setup for conversion on desired input channel where bits 12 and 13 set the mux channel 0-3
 config_var |= (AIchannel % 4) << 12;

 // Set bit 15 which 'start single-conversion' when written
 config_var |= 0x8000;

 // Write config register to the ADC which starts the conversion
 Wire.beginTransmission(ads1115_address); // Open I2C communication with the ADS1115
 Wire.write(ADS1X15_REG_POINTER_CONFIG); // Next 2 bytes intended for config register
 Wire.write(config_var >> 8); // Write config register High-Byte
 Wire.write(config_var & 0xFF); // Write Config register Low-Byte
 Wire.endTransmission(); // Close I2C communications

 // Wait for the conversion to complete
 do {
 Wire.requestFrom(ads1115_address, 2); // Request 2 bytes (16-Bits) from the ADS1115
 var = Wire.read() << 8; // Read the configuration register High-Byte
 var |= Wire.read(); // Read the configuration register Low-Byte
 } while (!(var & 0x8000)); // Loop until bit 15 is "0", i.e.; conversion complete

 // Read the signed 16-bit conversion results
 // Concatenate the two bytes to form the 16-bit result
 Wire.beginTransmission(ads1115_address); // Open I2C communication with the ADS1115
 Wire.write(ADS1X15_REG_POINTER_CONVERT); // Next 2 bytes read will be from
conversion register
 Wire.endTransmission(); // Close I2C communications

 Wire.requestFrom(ads1115_address, 2); // Request 2 bytes (16-Bits) from the ADS1115
 var = Wire.read() << 8; // First byte is High-Byte, bits [15:8] 8..15
 var |= Wire.read(); // Second byte is Low-Byte, bits [7:0] 0..7

 return(var); // Return the result

}

MULTI-IO-ARD

Rev 1.01
Page 13 of 19

Analog Outputs

The Analog Outputs are produced by two MCP4728 Quad Digital-to-Analog (DAC)

chips.

Analog Output circuitry highlights:

• Eight Analog Outputs

• 12-Bit resolution

• Software Selectable Voltage Reference

− System VDD

− Internal Low-Drift reference

• EEPROM retains last output voltage at Power-On

• Software programable power saving modes

Please refer to the MCP4728 manufacturer’s data sheet

for complete hardware and software information related to this device.

Figure 5 - Analog Outputs Block Diagram

MULTI-IO-ARD

Rev 1.01
Page 14 of 19

Setting the Analog Output I2C addresses
The default I2C address of DAC0 is 0x60 and the default address of DAC1 is 0x61. The

addresses are stored within the respective DAC chip and can only be changed by

reprogramming their internal EEPROM. The Analog Output circuitry can not be disabled.

To prevent conflicts, each device residing within the 0x60 – 0x67

address range must have a unique address on the I2C bus segment they

share.

Analog Output Software Example

/*

 * SCIDYNE Multi-IO-ARD 10-26-21 Mark Durgin

 * Basic demo for using the eight Analog Outputs

 * Utilizing two MCP4728 4-Channel 12-bit I2C DACs

 *

 * For compatibility with 3.3V and 5V hardware the program sets

 * VREF to use internal 2.048 reference and a Gain of 1.
 * Therefore, any DAC Channel Vout = 2.048V * (VALUE / 4095)

 * where VALUE is the 12-bit number written to the input register

 * of a DAC channels.

 *

 * See MCP4728 datasheet for details

 */

/* * * * * * * * * * * * * * * *

 * Important include files

 */

#include <Wire.h>

/* * * * * * * * * * * * * * * *

 * Setup Runs only once. Execution then

 * goes to loop

 */

void setup(void) {

 // DAC0 definitions

 #define MCP4728_DAC0_ADDRESS 0x60

 #define AO_0_VALUE 0 // DAC0 Channel A, Analog Output#0 Produces 0.000 Volts

 #define AO_1_VALUE 585 // DAC0 Channel B, Analog Output#1 Produces 0.293 Volts

 #define AO_2_VALUE 1170 // DAC0 Channel C, Analog Output#2 Produces 0.585 Volts
 #define AO_3_VALUE 1755 // DAC0 Channel D, Analog Output#3 Produces 0.878 Volts

 // DAC1 definitions

 #define MCP4728_DAC1_ADDRESS 0x61

 #define AO_4_VALUE 2340 // DAC1 Channel A, Analog Output#4 Produces 1.170 Volts

 #define AO_5_VALUE 2925 // DAC1 Channel B, Analog Output#5 Produces 1.463 Volts

 #define AO_6_VALUE 3510 // DAC1 Channel C, Analog Output#6 Produces 1.755 Volts

 #define AO_7_VALUE 4095 // DAC1 Channel D, Analog Output#7 Produces 2.048 Volts

 // Local temporary variables created on stack

 uint8_t output_buffer[16]; // Holds DAC bytes to be written via I2C

 // Initialize I2C support

 Wire.begin();

 // Preload DAC0 values into buffer

 output_buffer[0] = AO_0_VALUE >> 8; // DAC0 Channel A HB

 output_buffer[1] = AO_0_VALUE & 0xFF; // DAC0 Channel A LB

 output_buffer[2] = AO_1_VALUE >> 8; // DAC0 Channel B HB

 output_buffer[3] = AO_1_VALUE & 0xFF; // DAC0 Channel B LB

 output_buffer[4] = AO_2_VALUE >> 8; // DAC0 Channel C HB
 output_buffer[5] = AO_2_VALUE & 0xFF; // DAC0 Channel C LB

 output_buffer[6] = AO_3_VALUE >> 8; // DAC0 Channel D HB

 output_buffer[7] = AO_3_VALUE & 0xFF; // DAC0 Channel D LB

 // Preload DAC1 values into buffer

 output_buffer[8] = AO_4_VALUE >> 8; // DAC1 Channel A HB

 output_buffer[9] = AO_4_VALUE & 0xFF; // DAC1 Channel A LB

 output_buffer[10] = AO_5_VALUE >> 8; // DAC1 Channel B HB

 output_buffer[11] = AO_5_VALUE & 0xFF; // DAC1 Channel B LB

 output_buffer[12] = AO_6_VALUE >> 8; // DAC1 Channel C HB

 output_buffer[13] = AO_6_VALUE & 0xFF; // DAC1 Channel C LB

 output_buffer[14] = AO_7_VALUE >> 8; // DAC1 Channel D HB

 output_buffer[15] = AO_7_VALUE & 0xFF; // DAC1 Channel D LB

 /*

 * Set VREF of each DAC channel. In this example,

 * internal VREF (VREF = 2.048) is selected for all DAC channels

 */

 // Perform on DAC0 ...

 Wire.beginTransmission(MCP4728_DAC0_ADDRESS); // Open I2C communication with the

MCP4728 DAC0
 Wire.write(0x8F); // C2 = 1, C1,C0 = 0, VrefA - VrefD = 1 (Internal Vref)

 Wire.endTransmission(); // Close I2C communications

 // ... and also on DAC1

 Wire.beginTransmission(MCP4728_DAC1_ADDRESS); // Open I2C communication with the

MCP4728 DAC1

 Wire.write(0x8F); // C2=1, C1,C0 = 0, VrefA - VrefD = 1 (Internal Vref)

 Wire.endTransmission(); // Close I2C communications

 /*

 * Set Gain of each DAC channel. In this example,

 * Gain of 1 is selected for all DAC channels.
 */

 // Perform on DAC0 ...

 Wire.beginTransmission(MCP4728_DAC0_ADDRESS); // Open I2C communication with the

MCP4728 DAC0

 Wire.write(0xC0); // C2,C1 = 1, C0 = 0, GainA - GainD = 0 (Gain= 1X)

 Wire.endTransmission(); // Close I2C communications

 // ... and also on DAC1

 Wire.beginTransmission(MCP4728_DAC1_ADDRESS); // Open I2C communication with the

MCP4728 DAC1

 Wire.write(0xC0); // C2,C1 = 1, C0 = 0, GainA - GainD = 0 (Gain= 1X)

 Wire.endTransmission(); // Close I2C communications

 /* * * * * * * * * *

 * Perform Fast Write to all DAC channels

 */

 // Perform on DAC0 Analog Outputs 0,1,2,3 ...

 Wire.beginTransmission(MCP4728_DAC0_ADDRESS); // Open I2C communication with the

MCP4728 DAC0

 // Analog Output #0

 Wire.write(output_buffer[0]); // DAC0 Channel A Value HB, Analog Output#0

 Wire.write(output_buffer[1]); // DAC0 Channel A Value LB, Analog Output#0

 // Analog Output #1
 Wire.write(output_buffer[2]); // DAC0 Channel B Value HB, Analog Output#1

 Wire.write(output_buffer[3]); // DAC0 Channel B Value LB, Analog Output#1

 // Analog Output #2

 Wire.write(output_buffer[4]); // DAC0 Channel C Value HB, Analog Output#2

 Wire.write(output_buffer[5]); // DAC0 Channel C Value LB, Analog Output#2

 // Analog Output #3

 Wire.write(output_buffer[6]); // DAC0 Channel D Value HB, Analog Output#3

 Wire.write(output_buffer[7]); // DAC0 Channel D Value LB, Analog Output#3

 Wire.endTransmission(); // Close I2C communications with the MCP4728 DAC0

 // ... and on DAC1 Analog Outputs 4,5,6,7 ...

 Wire.beginTransmission(MCP4728_DAC1_ADDRESS); // Open I2C communication with the
MCP4728 DAC1

 // Analog Output #4

 Wire.write(output_buffer[8]); // DAC0 Channel A Value HB, Analog Output#4

 Wire.write(output_buffer[9]); // DAC0 Channel A Value LB, Analog Output#4

 // Analog Output #5

 Wire.write(output_buffer[10]); // DAC0 Channel B Value HB, Analog Output#5

 Wire.write(output_buffer[11]); // DAC0 Channel B Value LB, Analog Output#5

 // Analog Output #6

 Wire.write(output_buffer[12]); // DAC0 Channel C Value HB, Analog Output#6

 Wire.write(output_buffer[13]); // DAC0 Channel C Value LB, Analog Output#6

 // Analog Output #7
 Wire.write(output_buffer[14]); // DAC0 Channel D Value HB, Analog Output#7

 Wire.write(output_buffer[15]); // DAC0 Channel D Value LB, Analog Output#7

 Wire.endTransmission(); // Close I2C communications with the MCP4728 DAC1

}

/*

 * Execution comes here after setup runs only once.

 * loop continuously does nothing

 */

void loop() { delay(1000); }

MULTI-IO-ARD

Rev 1.01
Page 15 of 19

Interrupts

The MULTI-IO-ARD can generate an interrupt to signal the completion of Analog-to-

Digital conversion, an analog input has reached a pre-defined comparator threshold, when

a digital input has changed state, or when a pre-defined pattern appears on the digital inputs.

When properly configured for “open-collector” type outputs multiple interrupts sources

can be used together to drive the same host interrupt.

Host Interrupt Selection
Jumper block J3 configures which host interrupt will be associated with the board and

which interrupt sources will be used.

Interrupt Configuration Jumpers, J3

Jumper Description

PB Digital I/O circuitry Port B Interrupt output

PA Digital I/O circuitry Port A Interrupt output

AD1 Analog-to-Digital ADC1 Interrupt output

AD0 Analog-to-Digital ADC0 Interrupt output

INT1(1) Host Interrupt input #1, often shared with Arduino Digital I/O #3

INT0(1) Host Interrupt input #2, often shared with Arduino Digital I/O #2

PU Enable Pull-Up resistor, 4.7K to +VIOBUS

1) Interrupt input may be shared with other system resources.

Try selecting an interrupt which is not currently being used by other system resources. If

interrupts must be shared, make sure all the software applications and hardware involved

support interrupt sharing. To prevent excessive current draw and the possibility of

erroneous operation, use only one pull-up resistor.

MULTI-IO-ARD

Rev 1.01
Page 16 of 19

 Appendix - A J1, Input / Output Connections

Analog Ground 1 2 Analog Ground

AICH7 3 4 AICH6

AICH5 5 6 AICH4

AICH3 7 8 AICH2

AICH1 9 10 AICH0

AOCH7 11 12 AOCH6

AOCH5 13 14 AOCH4

AOCH3 15 16 AOCH2

AOCH1 17 18 AOCH0

Analog Ground 19 20 Analog Ground

+VIOBUS 1 21 22 Digital Ground

(bit 14) PB6 23 24 PB7 (bit 15)

(bit 12) PB4 25 26 PB5 (bit 13)

(bit 10) PB2 27 28 PB3 (bit 11)

(bit 8) PB0 29 30 PB1 (bit 9)

(bit 6) PA6 31 32 PA7 (bit 7)

 (bit 4) PA4 33 34 PA5 (bit 5)

(bit 2) PA2 35 36 PA3 (bit 3)

(bit 0) PA0 37 38 PA1 (bit 1)

+VIOBUS 1 39 40 Digital Ground

Notes:

1) 3.3V or 5V depending on setting of jumper J9. Supplied by Host. Non-Isolated, Unfused.

MULTI-IO-ARD

Rev 1.01
Page 17 of 19

Appendix - B Specifications
Specifications subject to change without notice

Analog Inputs:

General: Two ADS1115 ADC chips providing up to eight Single-Ended or four Differential analog inputs

A/D resolution: 16-bit (1 in 65536, No Missing Codes)

Input ranges: Software programmable: ± 6.144V, ± 4.096V, ± 2.048V, ± 1.024V, ± 0.512, ± 0.256V

Input impedance: 710K minimum

Nonlinearity: ±1LSB

Sampling Rate: 8, 16, 32, 64, 128, 250, 475, 860 SPS

Analog Outputs:

General: Two MCP4728 DAC chips provide eight analog output channels

D/A resolution: 12-bit (1 in 4096 of full scale)

Output ranges: Using Internal VREF (2.048V): Using External VREF (VDD):

• 0.000V to 2.048V with Gain Setting = 1

• 0.000V to 4.096V with Gain Setting = 2
Note: 4.096V only available when +VIOBUS = 5.0V

• 0.000V to VDD

Output current: ±25mA max. per output. Total may be limited by hosts inability to supply enough current.

Settling time: 6µs max. to within ±½LSB of final value

Nonlinearity: Less than ±2LSB

Digital I/O:

General: One MCP23017 chip provides 16 bi-directional I/O channels across two 8-Bit ports

Output current: ±25mA max. per output. Total may be limited by hosts inability to supply enough current.

Pull-Up Resistor: 100K, individually software enabled on each I/O channel

I2C Interface:

Software: Uses standard Arduino I2C library functions. Fully supports third-party software libraries like

those from Adafruit and SparkFun.

Addressing: Digital I/O: Default: 0x20. Jumper 0x20 – 0x27

Analog Inputs: Default: ADC0 = 0x48, ADC1 = 0x49. Jumper 0x48 – 0x4B

Analog Outputs: Default: DAC0 = 0x60, DAC1 = 0x61. Reprogrammable 0x60 – 0x67

Speed: Standard (100kbps), Fast (400kbps), High Speed (1.7Mbps)

Pull-Ups: Optional jumper enabled 4.7K Pull-Ups on SDA and SCL signals

Interrupt (Optional): One Arduino interrupt, jumper selectable IRQ 1 or 2. Used by Analog-to-Digital converters and/or

Digital I/O. Optional 4.7K Pull-Up Resistor

Connections:

I/O:

External Expansion:

Arduino:

40 Position IDC Ribbon Cable

4 Position Qwicc (optional), 4 Position nodeLynk (optional)

Stack-through connectors allow multiple shields.

Power: 8 Pos. x 1 Row

Analog: 6 Pos x 1 Row

Digital: 8 Pos x 1 Row & 10 Pos. x 1 Row

ICSP: 3 Pos x 2 Row (optional)

Power: Jumper selectable +3.3V or 5.0V. Power derived from Arduino host.

Dimensions: Standard Arduino UNO R3 footprint and dimensions. Approx.. 2.10” W x 3.00”L overall.

Environmental:

Operation: -25ºC to 65ºC (Standard) Non-condensing relative humidity: 5% to 95%

Compliance: RoHS, Lead-Free

Product Origin: Designed, Engineered, and Assembled in U.S.A. by SCIDYNE® Corporation using domestic and

foreign components.

MULTI-IO-ARD

Rev 1.01
Page 18 of 19

User Notes

